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ABSTRACT

Reinforcement learning models allow for quicker learning of patterns that are hard to identify. By rephrasing
Ramsey’s theorem as a game, we apply Reinforcement learning to them to develop a better strategy. In this study,
we trained and developed reinforcement learning models to play Ramsey games on graphs to find a better
strategy that was the least costly - one that takes the least time and memory. A Graph Neural Network with
Q-Learning model was hypothesized to have the best strategy and be the most efficient. Agents were trained over
multiple games and data was collected to determine the strength, performance, and cost of the model. Graph
Q-Learning models were found to be the best performing and least costly overall. Further experimentation needs

to be done to evaluate the performance of these networks on more complex graphs with more computing power.



1 INTRODUCTION
1.1 Ramsey’s Theorem

Let there be a graph G with n vertices. Edges will be added and colored with one of 2 colors: red or blue. A
group of edges of size j is monochromatic if they fully connect all j vertices and share the same color. Ramsey’s
Theorem states that for all m > 2, there exists n > m such that every 2-coloring of G of n has a monochromatic
K. [3]. This K,,, consists of points that all have the same colored line between them. This means that for every
graph size and group size, there is some graph where there is a fully connected group of edges that share the
same color. For a 2-coloring in red and blue of a graph, let the least number of vertices a graph needs be equal
to R(a) where there must be a blue K, or a red K,,. Ramsey numbers have applications in network reliability,
information theory, and proving that programs terminate.

Ramsey numbers are known for small values of a. With certain theorems, bounds can be established for Ramsey
numbers, but for larger values of a, the bounds become much larger than the actual Ramsey number [4]. Upper
bounds can be found but they are often not tight, and it is difficult to prove there is no better way to color the
graph.

This theorem inspires the following game. This game starts with an empty graph of n vertices and two players.
Both alternate coloring lines between vertices and the first one to get a monochromatic K, in their color wins.
Every turn, each player will have certain legal actions it can perform. In this case, the actions will be adding an
edge of the player’s color between two vertices. The player will look at these actions and make a decision based
on its policy, which includes the state of the graph. This decision will be reflected in the graph and on its next
turn, the player will receive a reward based on its action. In this case, if the action wins the game for the player
by making a monochromatic K,, the player will receive a reward of 1. In Ramsey games, the player cannot make
a move that will directly cause it to lose, but it will receive a reward of -1 when the adversary wins. The player
will also receive a reward of -1 if the game ends because all vertices are colored and no one has won; this can
only happen on graphs with a number of vertices that is not a game Ramsey number. Game Ramsey numbers are
different from Ramsey numbers because the number of blue and red edges is roughly the same at any point in
the game. With normal Ramsey numbers, a coloring can have any amount of edges in a certain color. However,
game Ramsey numbers can still provide a good estimate of Ramsey numbers. If the player’s action does not end
the game, it will receive a reward of 0.

An ideal player is one that will always play the best it can, winning if at all possible, drawing if not, and then
losing if it is impossible to draw. By Ramsey’s theorem if the number of points is large enough, namely at least
R(a), then the game cannot be a draw. Our interest is in finding smaller numbers such that the game cannot be a
draw.

An ideal policy is one that will always produce a move that leads to the best outcome. A player will always
force a draw if possible if it has an ideal policy. This is significant because this approach can reduce the amount
of time needed to prove if certain graphs’ vertices are game Ramsey numbers. If an ideal policy existed, only

one game would need to be played on a graph with two ideal players to tell if it is a game Ramsey number. It is



difficult to find a truly ideal policy, but an optimal policy may be able to be found instead through reinforcement
learning. This would not eliminate all graphs, but would have the ability to eliminate some. This way, without
brute-force or mathematical proofs, the cost of proving game Ramsey numbers may be able to be significantly

reduced through the use of reinforcement learning.

1.2 Reinforcement Learning

Reinforcement Learning is a type of machine learning where models start with only the basic knowledge about a
game: the core rules and the win conditions. The models learn a strategy, also called a policy, from playing the
game repeatedly. They use the outcome of a game to get feedback on the moves they have played.

One reinforcement learning policy can be done with Monte Carlo Tree Search (MCTS). This method uses
random sampling of playouts of a game with limitations to get an approximation of the benefit of different actions.
MCTS simulates many random playouts of possible games from the current state. After the random simulation,
MCTS looks at which moves leads to the most wins and chooses that one. This method is computationally less
expensive and can be limited to fit computation needs.

Another method is Q-Learning. Q-Learning assigns a score to every combination of state and action based
on the quality of the action in the long run. Q-Learning finds q-values based on the maximum g-values of its
children and the reward for that state. In Tabular Q-Learning (TQL), every state-action pair and its corresponding
g-value are stored in a table to be accessed and updated. Every combination has a q-value of gy, which is updated
according to the Bellman formula: guevw = qoig + @ * (r +y * m — qo). Here, « is the learning rate, y is the discount
rate, and m is the maximum optimal q value from that state [2, 7]. While this approach does allow for specific
storing of g-values, it quickly becomes impractical in storage. The larger the amount of states and actions, the
more g-values need to be stored.

To fix this issue, Deep Q-Learning (DQN) can be used. Deep Q-Learning uses a neural network to approximate
the q-values. The neural network generates the q-values for all actions from a certain state. This network is
trained with the same Bellman equation. This method can approach the same amount of precision as tabular
Q-Learning, takes much less storage, and has the added advantage of being able to estimate g-values for states it
has not seen before.

Deep Q-Learning takes in the board state as input and has fully connected layers in the neural network. This
network can be augmented with Graph Neural Networks, which gain more information about the graph state
and take into account relations between vertices. We call these models GQN models. GNNs can allow us to
improve feature detection in graphs by considering different groups of vertices. GNNs work by taking in a feature
matrix, which in our case would be a 6x1 matrix of colors for each node, and an adjacency matrix, which in our
case would be a 6x6 matrix of all 1’s except on the diagonals. [1, 5, 6, 10]. By incorporating information from
neighboring nodes, GNNs may be well suited for Ramsey games because making groups of nodes is the crux
of Ramsey games. A GOQN model is predicted to be the best overall because it effectively considers groups of

vertices which gives it the most information and least cost.



2 METHODS

All code was written in Python 3.8.5. The code for each agent contains all of its decision making only. All utility
functions are in the Utils class so they can be used consistently across agents. All agents that used neural networks
used an Adam optimizer, MSE loss function, and Xavier uniform weight initialization for the layer’s weights
unless otherwise noted. All agents that used neural networks made use of replay experience and a target network.
This graph has n nodes and colored edges are represented by weights with 1 representing a red edge and -1

representing a blue edge.

2.1 Agent Specifications

The Tabular Q-Learning (TQL) agent was implemented using a dictionary to store g-values for each state. The
dictionary’s keys consisted of the state’s current adjacency matrix weighted by the edge weight and then the
current action. The current action was in the form of a tuple of nodes.

The Deep-Q Learning Agent (DQN) was implemented using pytorch. The agent’s policy was a neural network
where the input was the upper half of the weighted adjacency matrix of the state, and the output was the
g-values for each possible action. The neural network had an input layer, 2 hidden layers of the hidden layer size
hyperparameter, and a single hidden layer of half the size of the hidden layer size hyperparameter and the output
layer. Each layer other than the output layer went through a ReLU function before being fed into the next layer.

The Graph Q-Learning (GQN) agents utilized Graph Neural Networks (GNNs) in addition to deep q-networks.
These GQN’s neural networks are structured similarly to how Jiang et al. structured their network. The networks
have an input which is a GNN layer, two hidden GNN layers with skip connections from the previous layer and
then 2 fully connected linear layers. All layers have ReLU activation functions in between. Three GQN agents
were made, one using Graph Convolutional Layers [6] called GQN-2, one using EdgeConv Layers [9] called
GOQN-3, and one using GATConv Layers [8] called GQON-1. Each GON is the same except for the type of layer
used. GQN-3 did not use weight initialization.

The Monte Carlo Tree Search (MCTS) Agent utilized monte carlo tree search for its policy. The tree is limited
to a depth of 4 because of the large tree structure. The MCTS agent uses upper confidence bounds to select
its next move after simulation. A heuristics function was used to aid the algorithms in selecting a state during
rollouts. The heuristics algorithm was used with a probability of 1 — € or random rollouts with an ¢ probability.
The heuristics function takes into account the number of cliques, average length of the cliques, number of cliques
missing the same edge, and the number of mixed cliques that are mostly the agent’s color. It measures the amount
of each and returns the sum as the heuristic score. The number of cliques and average length of cliques promote
both more and longer cliques.

Since each agent had a number of hyperparameters, Ax was used to tune the hyperparameters with bayesian
optimization. The following hyperparameters were predetermined unless otherwise noted. The MCTS algorithm
samples 200 times. The minimax with depth restrictions has a depth restriction of 4. The Q-Learning algorithms

has an « of 0.8, € of 0.5, which decays every move by a factor of 0.99997. The « hyperparameter is a constant that



preserves old g-values for a state, y is the discount rate for rewards, and € is the chance of a random action being

selected. To encourage quick games, the algorithms have a y of 0.3.

2.2 Training and Testing

Each agent type was trained against an opponent of the same type as this increases robustness of a model.
Training was conducted by allowing the agents to play games from no knowledge and learn from the games they
played as they played. The agents were trained for 30,000 games, or for a maximum of 6 hours. During training
the number of moves, win rate, mean time taken to make a move, memory used, average loss were collected
every game. The time collected was measured in nanoseconds using the python time module. The memory used
was measured using the python tracemalloc module.

After being trained, each model was saved. Each model was played against a random agent 3 times. The
random agent chose a random valid move each turn. This served as a common benchmark for each model. Each
model played against the random agent for 500 games except for MCTS which played against it 10 times as
it was limited to 6 hours of training time. The amount of wins the agent had being both the player and the
opponent was collected for each trial. The percentage of wins was averaged over the three trials and used to
statistically compare the models. An ANOVA test was performed to check that the groups were significantly
different. Afterwards, the Bonferroni method for multiple tests was used when comparing each model against
each other. For models that were not equal, one-sided t-tests were used to determine which model performed
better. Both of the best performing models in R(3) and R(4) will play a game against a random agent, and their

moves will be used to study their strategy.

3 RESULTS

3.1 Random Player Win Rates

Each of the trained models played against a random player for 500 games 3 times each. The mean win rate of
each set of 500 games is shown in the following graphs grouped by agent type. The following agents were tested:
MCTS, GQN-1, GON-2, GQN-3, TQL, DON. Agents were trained on graphs with the number of vertices for R(3)
and R(4). The Players label refers to agents who go first in a game, and the Opponents label refers to agents who
go second in a game. A 100% win rate means the agent wins every game against the random opponent, indicating

the agent’s strategy for playing the game is optimal.



Fig. 1: Win Rate of Models against a random player on R(3) Fig. 2: Win Rate of Models against a random player on R(4)
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In Fig.1, MCTS Player had the highest 98.3% win rate and MCTS Opponent had the highest 94.9% win rate,
while the other agents had win rates ranging from 65% to 35%. The GQN players had a higher win rate than the
other agents except for MCTS, but a lower opponent win rate. All opponent win rates were lower than their
respective player win rates. In addition, player win rate did not correspond with opponent win rate, meaning a
model type that had a high win rate for its player type was not also guaranteed to have a similarly high win rate
for its opponent type.

On R(4), DON Player had the highest win rate of 63.4% win rate and DQN Opponent had a 59.7% win rate. The
win rates ranged from 60% to 35%. GQN had the lowest win rate on R(4) for both player and opponent. MCTS
did not have as high a win rate on R(4) as it did on R(3), and its opponent type did better than its player type,
which is not reflected in other models. After comparing the means, we find that for both Player and Opponent
DON is better than all the other models. There is no statically significant evidence to prove the other models are
not equal, although the TQL Player is better than the GQN Player.

3.2 Model Training Characteristics

While each model was being trained, win rate, average move time, number of moves and memory usage was
collected every epoch. One epoch corresponds with one game. On R(3) TQL and DQN agents were trained for
30,000 epochs, GON agents were trained for 3000 epochs, and MCTS agents for 1000 epochs. On R(4), DON
agents were trained for 1500 epochs, TQL agents for 100 epochs, GQN agents for 500 epochs, and MCTS agents
for 20 epochs.



Fig. 3: Win Rate of GQN and MCTS Models on R(3)
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Win rate was calculated by taking the total amount of wins and dividing by the total amount of played games.

The faster the growth of the win rate, which means the model is winning more, and a win rate farther from 50%

represents the model having a better strategy to play games.

For R(3), Figures 3 and 5, GQN-3’s win rate grows the fastest. MCTS has a high win rate very quickly, and its

win rate does not change significantly. GQN-1 and GQN-3 had similar growth in win rates, with GON 3 having a

greater win rate. The TQL player had the highest final win rate of 92% and the DQN player had a final win rate of

about 84%.

For R(4), Figures 4 and 6, DQN’s win rate grows the fastest across all models. TQL did not significantly differ
from a 50% win rate for both players. GOQN 1’s win rate converges to 55%. DON had a final win rate of 69%. All

win rates tended to be lower than those in R(3) and win rate growth was also slower. DQN had the highest win

rate of 88%.



Fig. 7: Move Time of GQN and MCTS Models on R(3)
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Average move time is in nanoseconds. It is calculated for an epoch by taking the average of the times taken for

an agent to make its move for all moves in that epoch. An agent with a faster move time is more efficient and less

costly. An agent with a move time that does not grow with epochs is also more efficient and less costly.
For R(3), Figures 7 and 9, GQN-1 Opponent had the highest move time. TQL agents had the lowest move time.
GON and MCTS agents had a move time at least 1 order of magnitude higher than TQL and DQN agents. DQN

agents move time slightly varied with epochs, with less time in earlier epochs.

For average move time on R(4), Figures 8 and 10, DQN agents had the lowest move time. DQN agents’ move

times varied with epochs growing as epochs increased. MCTS agents had the highest move times, which were at

least 2 orders of magnitude higher than TQL and DQN agents’. GQON agents had a consistent move time, and

were higher than those of TQL and DQN agents.



Fig. 11: Average Number of Moves of GQN and MCTS Models on R(3) Fig. 12: Average Number of Moves of GQN and MCTS Models on R(4)
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The average number of moves is the amount of moves an agent made during an epoch. Since the data varied
significantly, the graphs show a smoothed version of the data where a rolling window average of size 100 was
used. An agent with the most amount of moves is competing itself the most optimally and has the most optimal
strategy.

On R(3), Figures 11 and 13, DQN had the most amount of moves. GQN 3’s number of moves decreased with
epochs. All agents had between 8 and 3 moves every epoch. TQL had the lowest amount of moves and they
decreased over the epochs suggesting that there is some disparity between the players. On R(4), Figures 12 and
14, MCTS had the lowest amount of moves. GQN, TQL and DQN agents had between 30 and 50 moves in one
game, while MCTS had about 20. TQL and DQN agents’ number of moves became less varied with epochs, and

the number of moves also decreased. GQN-1 had the highest number of moves.



Memory Usage

Fig. 15: Memory Usage of GQN and MCTS Models on R(3)
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The above graphs show memory usage of agents every epoch. Higher memory usage is less efficient and more

costly. Memory usage that does not grow with epochs is more efficient and less costly. The bottom graphs’ y axes

are on a logarithmic scale.

On R(3), Figures 15 and 17, the TQL agents had the highest memory usage. TQL agents’ memory usage grew

significantly with epochs. The GQNs all had similar memory usage and had the lowest usage overall. The MCTS

agents varied significantly in their memory usage over epochs.

On R(4), Figures 16 and 18, TQL agents had the highest memory usage by at least 2 orders of magnitude at the

peak. The memory usage of the TQL and DQN agents grew steadily with epochs. MCTS agents’ usage varied

significantly as well. GQN had the least amount of memory used which was also consistent.
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3.3 Strategy Evaluation

Each of the top models in win rate against a random player were tested for strategy. This was done by having
each model play against itself. Therefore DQN was tested for R(4) and MCTS for R(3).

An model with an optimal policy, and therefore strategy, would have the most amount of moves possible if
both agents have a similar strategy. The number of moves would be smaller if one agent has a better strategy
than the other. The number of moves should be compared to the total possible for that board size, in this case 15
for R(3) and 77 for R(4).

When playing against itself, the MCTS Player on R(3) took 8 moves to win. The MCTS Player prioritized
forking from the same node, connecting multiple nodes to the same node for multiple moves. An example can be
seen in Figure 20. It is now the Opponent’s turn and since the Player will win by either the (0,1) or (3,5) edge.
The Player has forced a win through forking. The MCTS Opponent blocked the other player from winning the
game by blocking a clique, an example of which is shown in Figure 19. The edge from 1 to 2 blocks a red clique
consisting of (3,5,0). The game was ended by MCTS Player making a fork that forced an end to the game, where

two possible edges would have ended the game.

(a) Fig. 19 Blocking (b) Fig. 20 Forking

Strategy

When playing against itself, the DQN Player on R(4) took 65 moves to win. Both DQN agents did not prioritize
forking as much as MCTS agents did. More clusters of connections were present, with multiple separate forks
from different nodes. With more moves, agents started to fork from a few nodes more often, creating multiple

possible cliques with fewer nodes.
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4 DISCUSSION

In this study, multiple types of reinforcement learning agents were trained on Ramsey games to determine both
an optimal strategy and determine which model would be the least costly in finding a strategy. Agents were
trained on Ramsey games for both the R(3) and R(4) variants. The R(3) variant was played on a graph with 6
vertices and required a monochromatic fully connected group of 3 vertices, and the R(4) variant was played on a
graph with 18 vertices and required a monochromatic fully connected group of 4 vertices.

Agents were evaluated on their win rate against a random player, win rate while training, move time while
training, average number of moves while training and memory usage while training. On R(3) the top model
(MCTS) had a win rate of 97% going first and second, and on R(4) the top model (DQN) had a win rate of 62% and
60% going first and second respectively. The GON model was predicted to have the highest win rate, however, it
had the second highest win rate for R(3) with all 3 GQN models having higher win rates than TQL and DQN. On
R(4), however, GON had the lowest win rate. For win rate while training, a faster growing win rate represents a
faster learning model. The fastest win rate growth for R(3) was a GQN which was expected. On R(4), the DQN
model had the fastest win rate growth. Average number of moves was also measured and an agent with a higher
number of moves is the most optimal. A higher number of moves is most optimal because when both agents
have an optimal policy, they will try and force a tie by using as many moves as possible. An agent with a lower
amount of moves could represent one agent type having a better strategy than the other, and as such using the
least amount of moves to win. On R(3), DOQN had the most moves and on R(4) GQN had the most moves. When
evaluating strategy, the best performing models in terms of random player win rate were used. MCTS on R(3)
was found to prioritize connecting edges from the same node more than DQN on R(4) did. Forking may have
been a high performance strategy because it leads to wins more often than a simple strategy does. DQN on R(4)
also focused on connecting edges from the same node, but did so later in the game, and focused on forking from
a few base nodes. The spreading out of base nodes may be due to larger graph size and the more complex fully
connected group of 4 needed.

GON was predicted to be the least costly model. Measurements of cost, the resources used to train, in this
study were time taken to move and memory used. On both R(3) and R(4) GON had the least memory usage,
with TQL having the highest memory usage by about 1 order of magnitude on R(3) and 2 orders of magnitude
on R(4). This is an expected result as TQL must store an entry for each state-action pair, while other models do
not maintain values for state action pairs. In terms of time taken to move, TQL had the least time taken to move
on R(3) and DON on R(4). GON was expected to have the least time to move. GQN’s time taken to move was
about 4 times the time taken to move for TQL and DON on both R(3) and R(4). This could be due to a larger
g-value network, because GQNs had more complicated networks than DQN, and TQL only had to store values.
Overall, GQNs were the least costly because they have the least memory usage and while their time taken to
move is not the least, the factor by which it is bigger is compensated for by the extremely low memory usage.

Overall, GQN models performed the best on R(3) and DQN did so no R(4) with MCTS showing high performance

on R(3) but not on R(4). The win rate, cost and strategy of these models proves promising for finding better

12



strategies for Ramsey games. With more computing power, these models may be able to be used on higher Ramsey
numbers of graphs and used to develop a more comprehensive strategy that can be expanded to Ramsey numbers
as well. Other types of GNNs, such as those that are better on dynamic graphs may also have applications here.
Using these improvements, we may able to develop a comprehensive strategy that may be able to more easily

narrow bounds for Ramsey numbers.
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